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Synthetic barriers such as gloves, condoms and masks are widely used in efforts
to prevent disease transmission. Due to manufacturing defects, tears arising during
use, or material porosity, there is inevitably a risk associated with use of these
barriers. An understanding of virus transport through the relevant passageways
would be valuable in quantifying the risk. However, experimental investigations
involving such passageways are difficult to perform, owing to the small dimensions
involved. This paper presents a mathematical model for analyzing and predicting
virus transport through barriers. The model incorporates a mathematical description
of the mechanisms of virus transport, which include carrier-fluid flow, Brownian
motion, and attraction or repulsion via virus–barrier interaction forces. The critical
element of the model is the empirically determined rate constant characterizing
the interaction force between the virus and the barrier. Once the model has been
calibrated through specification of the rate constant, it can predict virus concentration
under a wide variety of conditions. The experiments used to calibrate the model
are described, and the rate constants are given for four bacterial viruses interacting
with a latex membrane in saline. Rate constants were also determined for different
carrier-fluid salinities, and the salt concentration was found to have a pronounced
effect. Validation experiments employing laser-drilled pores in condoms were also
performed to test the calibrated model. Model predictions of amount of transmitted
virus through the drilled holes agreed well with measured values. Calculations
using determined rate constants show that the model can help identify situations
where barrier-integrity tests could significantly underestimate the risk associated
with barrier use.

c© 1999 Society for Mathematical Biology

1. INTRODUCTION

In recent years, concern about the AIDS epidemic has led to a substantial increase
in attention towards barriers to virus transmission. The most commonly used bar-
riers are gloves (surgical and examination) and condoms, but endoscopic sheaths,
biomedical filters, gowns, drapes, and masks also constitute barriers of consider-
able public-health importance. Due to material or manufacturing defects, holes and
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tears which arise during barrier use, and material porosity, a nonzero likelihood of
transmission through the barrier inevitably exists. Tests are therefore necessary to
evaluate barrier effectiveness. These tests often incorporate a membrane filled with
a virus suspension under static pressure (Lytleet al., 1991; Careyet al., 1992), and
the viruses transmitted into a collection fluid outside the membrane are counted.
While providing valuable data on the barrier integrity under a specific set of test
conditions, the penetration tests also motivate a number of critical questions regard-
ing barrier effectiveness under more general circumstances. For example, given the
probability of transmission of a certain virus through a membrane, what is the prob-
ability of transmission of a different (potentially more hazardous) virus? Or what
is the likelihood of transmission under nonstatic conditions? In essence, when do
penetration tests underestimate the risk associated with the use of a given barrier?

An understanding of the mechanisms of virus transport through barrier pores
would be valuable in accurately predicting barrier performance. (We will use the
term pore to signify passageways of all types.) Unfortunately, experimental investi-
gation of virus motion within pores is very difficult, owing to the small dimensions
involved. In this paper we present an alternative method for studying virus transport
through barriers, in the form of a computational model. The model incorporates a
mathematical description of the three dominant mechanisms of virus transport—
flow of the carrier fluid (saline, blood, semen, etc.), random thermal motion, and
short-range virus–barrier interaction forces—into conservation equations to yield
the virus concentration throughout a prescribed pore geometry.

While mathematical models of particle transport through pores have been applied
to many industrial filtering processes, to our knowledge such models have not been
applied to virus permeation through synthetic barriers. This void is largely due
to the lack of knowledge about the interaction forces between the virus and pore
surface, and about how the characteristics of the carrier fluid affect the interaction
forces. Much of the effort of the present study has been devoted to characterizing
experimentally the virus–barrier interaction forces.

Besides the information characterizing the interaction forces, other inputs to the
model include virus size, virus concentration at the inlet of the pore, and pressure
driving the virus suspension through the pore. In laboratory tests of barriers, the
driving pressure is typically known, though in practice (i.e., during actual barrier
use) it must sometimes be roughly estimated from physiological information or
treated as a variable in a parametric study. The final input required by the model
is a geometric representation of the pore. The pore geometry is often unknown
in practice; hence, a complete prediction model should be capable of examining
a variety of possible pore types—tubes of various cross-sectional shapes, tortuous
paths, porous media, etc. Once the input information has been specified, the particle-
transport equations are numerically solved in the prescribed geometry to yield the
virus concentration throughout the pore, most importantly at the outlet.

In this introductory study, the viruses considered were the bacterial viruses (bac-
teriophages)φX174, PRD1,φ6, and MS2. The bacteriophages are laboratory-safe,
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comparable in size to many viruses of public-health importance, including HIV and
the Hepatitis viruses, and are used as surrogates for human viruses in laboratory
tests of barriers (Lytle and Routson, 1995). Additionally,φ6 contains an external
lipid membrane, like HIV. The barrier material used in our experiments was latex,
due to its pervasiveness in disease prevention. Saline was the carrier fluid through-
out, though the salt concentrations were varied to observe the effect of carrier-fluid
composition on the electrical forces. Pore geometries were limited to the parallel-
plate configuration of the calibration apparatus and the circular-cylinder geometry
characterizing the laser-drilled pores in condoms used to test the calibrated model.

The next section develops the mathematical foundations for the computational
model. Section 3 then describes the calibration experiments used to provide the
critical input to the model, the rate constant characterizing the virus–barrier interac-
tion forces. Once the rate constant is specified for a particular virus–barrier–carrier-
fluid combination, the model is calibrated for that combination and is capable of
predicting the amount of virus transmitted under a wide variety of conditions. In
Section 4 we discuss the validation experiments used to test the model under con-
ditions different from those used during calibration. Section 5 provides results of
the calibration and validation experiments as well as predictions for amounts of
transmitted virus in situations of potential public-health importance. The impor-
tant features of the results, including implications of model predictions on the risk
associated with barrier use, are discussed in Section 6. Section 7 summarizes the
major results and outlines future directions for model development.

2. MATHEMATICAL FORMULATION

The mechanisms by which viruses are transported through a barrier pore are
threefold. The first is convection due to the flow of fluid in which the viruses are
suspended. In essentially all barrier tests there is a net flow of the carrier fluid
due to an imposed pressure gradient. (Initiation of the flow is likely influenced by
surface tension as well.) In general, the viruses will both translate and rotate due
to their hydrodynamic interaction with the carrier fluid. The second mechanism of
virus transport is random thermal motion, or Brownian motion. Brownian motion
is typically negligible in the direction of fluid flow but is the dominant transport
mechanism direction perpendicular to the fluid streamlines. If the residence time
of the viruses within the pore is sufficiently long, Brownian motion enables them to
migrate to the boundary and experience a short-range interaction force exerted by the
pore surface. Whether the viruses subsequently adsorb to the pore surface depends
upon the extent of attraction or repulsion of the force as a function of distance. The
mechanisms of virus transport are summarized schematically in Fig. 1.

The transported quantity of interest is the virus concentration (number of viruses
per unit volume), denoted asc(xi , t), wherexi is tensor notation for the coordinate
vector(x1, x2, x3) andt is time. In the absence of any sources of viruses within the
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Figure 1. Mechanisms of virus transport within a pore.
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Figure 2. Parallel-sheet apparatus used in calibration experiments.

pore, the virus concentration obeys the standard conservation equation

∂c

∂t
+ ∂

∂xi
Ji = 0, (1a)
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where Ji is the virus flux and summation over repeated indices is implied. The
flux is the sum of the convective term, the Brownian or diffusion term, and the
contribution from interaction forces (Brenner and Gaydos, 1977):

Ji = cVi − Di j
∂c

∂xj
+ c

Di j

kT
Fj . (1b)

HereVi is the virus velocity,Di j the diffusivity tensor characterizing the Brownian
motion,k the Boltzmann constant,T the absolute temperature, andFj any external
force. The virus velocityVi is related to but different from the fluid velocity which
would exist in the pore at the same location in the absence of the virus. Under most
general circumstances, the virus and fluid velocities are obtained by solving the
equations of motion for a translating and rotating particle simultaneously with the
equations for a fluid flowing inside a pore and around the particle. The solutions
are coupled by the requirement that the fluid and particle velocities match at the
fluid–particle interface. This procedure must be followed when the virus size is
comparable to the cross-sectional dimension of the pore.

The boundary condition imposed at the pore surface is the perfect-sink condition:

c = 0 on pore surface. (2a)

This statement implies that viruses in contact with the pore surface are immobi-
lized, i.e., the concentration of free viruses at the pore surface is zero. The condition
also implies that the pore surface can accommodate infinitely many viruses which
may adsorb to it, without changing concentration, analogous to a perfect thermal
sink. The perfect-sink boundary condition has been used extensively in colloidal-
particle transport theory (Bowenet al., 1976; Prieve and Lin, 1980; Adamczyk and
Van De Ven, 1981; Chari and Rajagopalan, 1985; Song and Elimelech, 1995), but as
pointed out by Van de Ven (1989), the perfect-sink condition is limited in its ability
to model realistically particle–wall interactions. The perfect-sink condition cannot
account for reversibility (desorption of the particles back into the suspension) or
dynamic adsorption (motion of particles constrained in the direction normal to the
wall by interaction forces but able to move slowly in the direction parallel to the
wall). However, because of its inherent simplicity and, as we will see, usefulness in
predicting experimental results under a range of conditions of practical importance,
we retain the perfect-sink condition. The limitations of the model resulting from
application of the perfect-sink boundary condition are discussed in Section 6.

At the pore inlet, the virus concentration is prescribed:

c = c0 at inlet. (2b)

At the outlet of the pore the normal derivative of the concentration, i.e., the
diffusive flux, is assumed to be zero:

∇c · n = 0 at outlet. (2c)
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Even without consideration of complicated virus–barrier interaction forces, equa-
tions (1) and (2) are essentially untractable for arbitrary virus and pore sizes and
shapes. To proceed further we make several simplifying assumptions, and to help
justify these and subsequent assumptions we consider three scenarios to which the
model will be applied. The first scenario is a calibration experiment (described
in the next section): between two parallel sheets of latex a virus suspension flows
under gravity. The second is a validation experiment (described in Section 4), in
which the virus suspension flows through a drilled hole in a latex membrane. The
third scenario is virus transport through a hypothetical 1-µm diameter hole in a la-
tex membrane, under the influence of an 80 000 dynes cm−2 driving pressure. The
80 000 dynes cm−2 value is based upon coital simulations and is used in standard
FDA barrier tests (Careyet al., 1992) The 1-µm diameter considered is the order-
of-magnitude hole size observed in the fraction of surgical gloves found to leak in a
recent study (Lytleet al., 1991), assuming the holes yielding the observed amount
of transmitted virus are circular. Values of the relevant parameters for the three
scenarios are provided in Table 1. The simplifying assumptions and observations
we incorporate into the model are the following:

(1) The virus is spherical. This is approximately true for many viruses of public-
health importance, including HIV.

(2) The virus diameter is small (but not necessarily negligible) relative to the pore
diameter. (We use the term diameter to denote the cross-sectional characteristic
dimension of the pore, even though the cross-section is rarely circular.) This as-
sumption, when combined with assumption (1), allows for treatment of the virus
near the pore wall as a sphere near a plane. While the virus diameter is assumed
small compared to the pore dimension, it is taken to be large relative to the molecular
size of the carrier fluid (e.g., water), so that the virus may be treated as a particle
suspended in a fluid continuum.

(3) The carrier fluid is assumed to be Newtonian. This is a reasonable assumption
for saline, but the model may require modification in order to treat blood or semen
as the carrier fluid.

(4) Gravitational and hydrodynamic lift forces on the viruses can be neglected.
Because of the minute size of the viruses, forces proportional to their mass, and
hence the cube of their diameter, can be neglected. Typical gravity numbers are
provided in Table 1.

(5) The interaction force between the virus and pore acts normal to the pore
surface, and is a function strictly of the separation between the virus and the mean
surface of the pore wall. The pore surface must therefore be sufficiently smooth on
the scale of the virus diameter.

(6) Interactions between viruses can be neglected. This requires a sufficiently
dilute virus suspension.

(7) Steady-state conditions are assumed to apply. As discussed in Section 6, the
transmission rate through the calibration apparatus was observed to be steady, even
for high adsorption rates. (The number immobilized viruses adsorbed to the pore
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Table 1. Parameter values for three barrier-use scenarios: (1) The calibration experiments,
wherein the virus suspension descends under the influence of gravity, between two parallel
sheets of barrier materials; (2) The validation experiments, in which the virus suspension
flows through a laser-drilled hole in a barrier, with a driving pressure of 5400 dynes cm−2;
and (3) Transport through a 1µm hole in a latex barrier, under the influence of a driving
pressure of 80 000 dynes cm−2.

Parameter values in three barrier-use scenarios
Parameter Unit Scenario 1 Scenario 2 Scenario 3
Virus radius a (cm) 0.000005 0.000005 0.000005
Pore dimensiony0 or r0 (cm) 0.0025 0.0001 0.00005
Pore lengthL (cm) 15 0.01 0.01

Pressure gradient∂p
∂x (dynes cm−3) 980 540 000 8 000 000

Carrier-fluid viscosityµ (poise) 0.01 0.01 0.01
Carrier-fluid densityρ (gm cm−3) 1.0 1.0 1.0
Mean axial fluid velocityVm (cm s−1) 0.2 0.08 0.25
Virus Diffusivity D∞ (10−8 cm2 s−1) 4.3 4.3 4.3

Peclet NumberVmy0
D∞ 11 000 200 300

Reynolds NumberVmy0ρ
µ 0.05 0.0009 0.0012

Gravity Number4πρga4

3kT 0.0005 0.0005 0.0005

wall increases with time, but not number of viruses able to contribute to the flux
through the pore.)

As an example of the application of equations (1) and (2) and the simplifying
assumptions, we now develop the reduced equations in the Cartesian coordinate
system appropriate for the calibration apparatus described in the next section. The
virus suspension flows between two parallel sheets which are effectively infinite
in the transverse dimension (the ratio of the transverse dimension of the sheets to
the separation between them is about 200:1), i.e., the problem is approximately
two-dimensional. The geometry and(x, y) axes are pictured in Fig. 1. For the
small Reynolds numbers (Table 1) typically arising in flows through membrane
pores, there is a short developing region at the pore inlet, after which the fluid
and virus velocities are entirely in thex-direction and dependent only upony. We
therefore neglect the virus transverse velocity componentV2 and abbreviate the
axial velocityV1(y) asV(y). Likewise, the virus diffusivity components become
dependent solely upony just beyond the pore inlet. [For a sphere in the vicinity of a
plane wall, only the diagonal elementsD11 andD22 (andD33 for three-dimensional
analyses) of the diffusivity tensor are nonzero (Brenner and Leal, 1977).] Finally,
the axial diffusion termD11∂

2c/∂x2, which is of order (1/Pe)(y0/L) (see Table 1)
relative to axial convection, is ignored. (Very near the pore wall the virus velocity
goes to zero and axial diffusion is comparable to axial convection, but we shall see
that there transverse diffusion dominates.) In the complete absence of bulk flow
through the membrane, axial diffusion must be restored.

Under these conditions, equation (1) becomes

V(y)
∂c

∂x
− ∂

∂y

(
D(y)

∂c

∂y

)
+ ∂

∂y

(
cD(y)

F(y)

kT

)
= 0. (3)
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Here D and F are abbreviations for the diffusivity tensor componentD22 and
force vector normal componentF2, respectively. The inlet of the parallel-sheet
pore is located atx = 0, the outlet atx = L. The lower sheet is in the planey = 0
and the pore half-height (i.e., the line of symmetry) is defined byy = y0. The virus
is located by the position of its center, so the range of allowable vertical positions for
the virus isy ∈ (a,2y0− a), wherea is the virus radius. The boundary conditions
simplify to

c(x,a) = 0, (4a)

∂c

∂y
(x, y0) = 0, (4b)

c(0, y) = c0. (4c)

Condition (4b) is a statement of symmetry across the pore centerliney = y0.
The virus velocityV(y) in (3) takes the form

V(y) = Vf (y)g1(y), (5a)

whereVf (y) is the fluid velocity, which for fully developed flow through the parallel-
sheet configuration is given by

Vf (y) = 3

2
Vm

((
y

y0

)2

− 2
y

y0

)
. (5b)

Here

Vm = y2
0

3µ

(
−∂p

∂x

)
(5c)

is the mean velocity across the channel,µ the carrier-fluid viscosity, and∂p/∂x
the pressure gradient along the pore axis. (The pressure decreases with increasing
axial distance, making∂p/∂x negative.) The resistance factorg1(y) accounts for
hydrodynamic interaction of the wall with the virus and is given in tabulated form
by Goldmanet al. (1967). Beyond a few virus diameters from the pore wallg1(y)
is equal to one, while as the gap between the virus and wall shrinks to 0,g1(y)
behaves as:

g1(y) ∼ 0.7431

0.6376− 0.2ln(h)
(h→ 0), (5d)

where

h = y− a

a
(5e)
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is the dimensionless gap between the virus perimeter and the pore surface. Hence the
virus velocity decays to zero inversely as the logarithm of the pore–virus separation.
The pore boundaries likewise affect the virus diffusivity; it has the form

D(y) = D∞g2(y), (6a)

whereD∞ is the diffusivity for a Brownian particle of radius a in an unbounded
medium (Probstein, 1994):

D∞ = kT

6πµa
. (6b)

The functiong2(y) decays linearly to zero as the gap shrinks:

g2(y) ∼ h (h→ 0), (6c)

demonstrating that the random thermal motion is hindered by the presence of the
walls. Away from the wall(h� 0)g2 attains the value of 1, and for intermediateh
valuesg2 has been tabulated by Brenner and Gaydos (1977).

The functionF(y) represents the force between the virus and the barrier in the
presence of the carrier fluid. In the most general case this force is quite compli-
cated, particularly as the virus–barrier separation approaches molecular dimensions,
where the continuum approximation breaks down. Short range (on the order of a
nanometer) solvation forces (Israelachvili, 1992), which are not describable by a
continuum model, determine the nature of the adhesion between the pore and the
virus. For the purpose of virus-transport modeling, determination of the ultimate
fate of the virus is not paramount, and we consider viruses approaching to within
molecular dimensions of the boundary to be adsorbed into a perfect sink. We
turn our attention to the longer-ranging forces which govern whether the virus is
attracted to the pore surface. To a good approximation these forces are the van
der Waals and electrical double layer forces, which form the basis of the DLVO
theory (Hiemenz, 1986) used very successfully in modeling colloid stability and
particle capture. The virus–barrier interaction forces are significant roughly on the
scale of the particle diameter, and hence are long-range on the molecular scale but
short-range on the scale of the pore diameter.

The van der Waals force arises due to the electrical dipole distributions within
two interacting bodies. The magnitude and sign of the force depends upon the
nature of the propagation medium between the objects, but the van der Waals force
is usually attractive. This is the case for all of the viruses we have considered
interacting with latex in a saline medium. An expression for the van der Waals
force valid at all separation distances cannot in general be written, particularly
if the finite propagation time of the electromagnetic field between the interacting
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bodies is accounted for. A simple expression for the force between a sphere and a
plane wall, valid for gap distances less than about 15 nm, is

Fvdw = −2A

3a

1

h2(h+ 2)2
. (7)

The parameterA, known as the Hamaker constant, takes on values about 10−20J in
magnitude. Other expressions for the van der Waals force, having different ranges
of validity, are given by Jia and Williams (1990).

The electrical double layer force is present when there is a net electrical charge on
two interacting bodies. Membranes and viruses in an aqueous medium near neutral
pH are normally negatively charged; hence a repulsive electrical (Coulombic) force
exists. Mathematical description of the electrical force is difficult, as the source
term in the Poisson equation governing the electric potential is nonlinearly related
to the electric potential, through the Boltzmann distribution describing the ion
concentration within the carrier fluid. Uncertainty over whether a constant-charge
or constant-potential approximation applies as the virus approaches the pore wall
also contributes to the inexactitude of the mathematical description. The following
result of Hogget al. (1966) has been shown to be reasonably accurate for surface
potentials up to 60 mV:

Fedl = πε0εr aκ

(
2ψ1ψ2

2 exp(−κh)

1− exp(−2κh)
− (ψ2

1 + ψ2
2)

2 exp(−2κh)

1− exp(−2κh)

)
, (8)

whereε0 is the dielectric permittivity in vacuum,ε the relative permittivity of the
carrier fluid, κ the reciprocal Debye length, andψ1 andψ2 the surface electric
potentials of the virus and membrane. The range of validity of (8) and other ap-
proximations to the electrical force is discussed by Rajagopalan and Kim (1981)
and Jia and Williams (1990).

The total interaction forceF = Fvdw + Fedl contains three empirical parameters,
the Hamaker constant A characterizing the van der Waals force and the two electric
potentialsψ1 andψ2. [The Debye lengthκ is also unknown but can be computed
from the ion concentration within the carrier fluid (Hiemenz, 1986).] Unfortu-
nately, for viruses, barriers, and carrier fluids of interest none of these parameters
is typically known. Hence it was initially an objective of this study to determine
empirically all three parameters for each virus–barrier–carrier-fluid combination.
The calibration experiments described in the next section were begun with this
three-dimensional parameter-estimation as the goal. Calibration of the model was
to be performed by finding the three parameters which minimized the difference
between the measured and computed amounts of virus transmission. However it
was discovered that the singular behavior of the interaction force necessitated an
extremely dense computational grid (the numerical methods are discussed below)
near the boundary. The computational time required to span the three-dimensional
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parameter space was consequently quite long. The following boundary-layer ap-
proach, adopted to treat analytically the rapid behavior near the pore wall and
thereby reduce computational time, also had profound implications on the amount
of empirical information required to calibrate the model.

In order to examine the dynamics of virus transport in a small region near the
pore wall scaling on the virus size, we can order the various terms in (3) by nondi-
mensionalizing the transverse lengths by the virus radiusa. The velocity in this
boundary layer is of orderVm(a/y0) in magnitude [equation (5b)]. Relative to trans-
verse diffusion, which is given by the second term in (3), axial convection [first term
in (3)] is of order (Pe)(a/y0)

3(y0/L). Based on the values in Table 1, this product
is very small. Thus, despite the high Peclet numbers typically characterizing virus
transport, over the small dimensions in which the interaction force is important,
convective transport can be ignored. Axial diffusion, if included in (3), is roughly
(a/L)2 times smaller than transverse diffusion, and is likewise insignificant. The
interaction-force term, the third term in (3), isO(1) relative to transverse diffusion.
We therefore retain the first and third terms in (3), and after integrating the reduced
equation with respect toy we obtain

D(y)
∂cbl

∂y
− cbl D(y)

F(y)

kT
= −J2(x). (9)

The subscriptbl denotes boundary-layer quantities. The function of integration
J2(x) is the virus flux toward the boundary, since the convective term in (1b) is
neglected in the boundary layer. Integrating (9) once more with respect toy and
enforcing boundary condition (4a) yields:

cbl = −J2(x)exp(−φ(y)/kT)
∫ y

a

exp(φ(y′)/kT)

D(y′)
dy′. (10)

The function φ is the potential energy associated with the forceF ,
i.e., F(y) = −∂φ/∂y.

In the outer region beyond the boundary layer, the interaction forces are zero and
(3) reduces to

V(y)
∂cout

∂x
− ∂

∂y

(
D(y)

∂cout

∂y

)
= 0. (11)

The approach ofD(y) to its asymptotic value(D∞) asy increases is slower than
that of F(y); hence the dependence ofD on y is retained in the outer region. As
virus motion due to virus–barrier interaction forces is absent in the outer region,
and the virus velocity component normal to the wall due to bulk fluid flow is zero,
the normal flux is simply

J2,out = −D(y)
∂cout

∂y
. (12)
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In the case of a nonzero normal velocity at the edge of the boundary layer, as in a
stagnation-point flow, the normal convective fluxcV2 must be small compared with
the diffusive fluxD∂c/∂y in order to apply the present theory. At the edge of the
boundary layer, the normal convective flux isO(V2a/D∞)relative to diffusion. For
a stagnation-point flow around a sphere of radiusas (representing the characteristic
scale of the medium), the velocityV2 is O((a/as)

2) relative to the freestream velocity
V∞ (Probstein, 1994). Hence it is required thatV∞a3/D∞a2

s be small when bulk
flow normal to the boundary is present.

At the edge of the boundary layer, both the virus concentration and the normal
flux must be continuous. After evaluating (10) at the boundary-layer limit, denoted
by y = ybl , and using the continuity conditions in conjunction with (12) to replace
inner variables by outer ones, we have the outer boundary condition

Kcout(x, ybl)− D(ybl)
∂cout

∂y
(x, ybl) = 0, (13)

where

K−1 = exp(−φ(ybl)/kT)
∫ ybl

a

exp(φ(y′)/kT)

D(y′)
dy′. (14)

Selection ofybl is discussed subsequently.
As the axial virus flux within the boundary layer is small, for the purpose of com-

puting virus transmission through a pore the virus concentration can be determined
using just the outer equations, (11), (4b), (4c), and (13). Equation (13) states that
the virus transport within the boundary layer can be viewed as a first-order reaction
occurring aty = ybl , with rate constantK (Bowenet al., 1976). The outer equa-
tions exhibit no rapid variations and can be solved much more quickly than the full
equations. But more importantly than providing an increase in computational effi-
ciency, the boundary layer approach has reduced the number of required empirical
parameters to one, the rate constantK . The relevantK values can be determined
directly from the experiments, rather than indirectly by computing the interaction-
force parameters(A, ψ1, ψ2) and using them to perform the calculation in (14).
Hence, even though expressions for the van der Waals and electrical forces over
the entire range of interest may be unwieldy, and contain questionable assumptions
in certain circumstances, these complications are irrelevant if we work directly in
terms of rate constants.

The procedure for determiningK was: given the calibration-apparatus dimension
y0 and the measured relative transmission (amount of virus out of the channel for
a specified time period divided by the amount in), solve the outer equations in
the simulated geometry, compute the relative transmission, and adjustK until the
relative transmissions agree to a small tolerance. The relative transmission was
determined computationally from the ratio of the integrated fluxes at the inlet and
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outlet sections:

relative transmission=
∫ y0

ybl
c(L , y)V(y)dy∫ y0

ybl
c(0, y)V(y)dy

. (15)

The relative transmission allows for comparisons to be made independent of the inlet
concentration, which is difficult to keep constant experimentally. The actual number
of viruses transmitted in a given experiment is the numerator of (15) multiplied by
the channel width and the relevant time interval. The relative transmission can also
be interpreted as the probability of transmission through the pore for any given virus.

The inverse problem of determiningK given relative transmission was solved
using a secant method, which typically converged to 10−6 accuracy in approximately
five iterations (i.e., five solutions to the outer equations). The outer equations
were solved using finite-differences and the method of lines, as implemented in
the NAG software package (Numerical Algorithms Group, 1991). The uniform
spatial density in they-direction was refined until doubling the number of grid
points produced less than 0.1% change in flux through the pore. The local error
tolerance in the marching (i.e.,x) direction was refined in a similar manner. Using
1000 points across the channel and a local accuracy of 10−5 for marching axially,
execution times were in the order of 1 min on a VAX 4000 computer.

To apply the reaction-rate boundary condition in the computations, specification
of the boundary-layer limitybl was required. Selection ofybl was based on two
considerations: ifybl was made too small the interaction force was not negligible
outside the boundary layer, while ifybl was chosen too large a significant convective
flux existed within the boundary layer. To isolate the optimal boundary-layer width,
solutions of the outer equations using various values ofybl were compared with
corresponding solutions to the full equations (3) and (4). In order to perform
this comparison, it was assumed that the virus–membrane interaction forces were
adequately described by (7) and (8). The full equations were solved via the same
finite-difference algorithm as the reduced equations, except that an additional 1000
grid points (uniformly spaced) were required to resolve accurately the behavior
within the boundary-layer. It was found that a boundary layer thickness of two
virus radii, i.e.,h = 2 or ybl = 3a [equation (5e)] satisfied the above two criteria
quite well. Results comparing the full numerical solution with the approximate
solution based upon the boundary-layer approach are provided in Section 5.

3. CALIBRATION EXPERIMENTS

The calibration apparatus was designed with two main criteria in mind:
(1) transport through the apparatus must be easy to simulate computationally, i.e.,

the geometry should be relatively simple,
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(2) the residence time of the viruses in the apparatus cannot be too small relative
to the time necessary for the viruses to diffuse across the apparatus. Otherwise,
there will be insufficient time for the viruses to interact with the membrane.

The device ultimately selected, shown in Fig. 2, employed two parallel sheets
of latex with the virus suspension flowing between them under gravity. The
gap between the sheets was controlled by the presence of two strips of paper
serving as spacers. The length of the resulting rectangular channel was 15.2 cm
and its width, i.e., the distance between the spacers, was 1.0 cm. The channel
height (the gap between the sheets) varied with spacer thickness and the clamp-
ing force applied perpendicular to the sheets to avoid leaks, but was about 50µm
on average. The large ratio of the channel width to height allowed for the two-
dimensional approximation of the channel geometry described in Section 2. The
latex sheets were obtained by wrapping commercial condoms around polycar-
bonate blocks, which were then clamped together with the spacer in between.
(Thus, to be precise, the barriers were latex condoms with any coatings added
during the fabrication processes.) The blocks were machined at the top to pro-
vide a reservoir for the virus suspension. One block was slightly longer than
the other, and the bottom of the longer block was tapered for the purpose of
collecting drops. The double-block system was attached to a frame in such a
way that the vertical angle, and hence the flow rate through the channel, could
be varied. The residence time/diffusion time of the viruses in the channel could
thus be affected by the compression of the clamps as well as the channel
angle.

The viruses considered for the calibration experiments were bacteriophages of-
ten employed in barrier-integrity tests (Lytle and Routson, 1995). The bacterio-
phages analyzed wereφX174, PRD1,φ6, and MS2, with respective diameters of
27, 65, 80, and 24 nm. By comparison, the diameters of the human hepatitis B
virus and human immunodeficiency virus are about 45 and 100 nm, respectively
(Robinson, 1990; Wong-Staal, 1990). The virus concentration input into the chan-
nel reservoir was approximately 1.5×105 plaque forming units per ml. Physiologic
saline, 0.16 Molar NaCl, was the carrier fluid for each of the viruses. In addition,
calibration experiments were performed with PRD1 at various other salt concentra-
tions ranging from 0.00016M to 1.6M.

Each calibration experiment was initiated by placing 2.0 ml of virus suspen-
sion in the reservoir at the top and allowing capillary action and gravity to fill the
channel. The fluid exiting the channel formed drops at the tapered portion of the
apparatus. Separate drops were timed and collected and their volumes measured,
so that the channel flow rate was known as a function of time. Once a steady-
state flow rate was achieved, three consecutive drops were saved and assayed in
triplicate. The fluid in the reservoir was also sampled and assayed in triplicate.
Details of the assay procedure are discussed elsewhere by Lytleet al. (1991). The
average concentration of virus in the three drops taken from exit fluid was divided
by the concentration in a sample of inlet fluid to form the relative transmission:
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Relative transmission= Average virus concentration in three drops at outlet

Virus concentration at inlet
.

(16)

Experiments were performed for a range of values of the relative timeR, defined
by:

R= residence time of the virus within the apparatus

time necessary for the virus to diffuse across the channel
. (17)

In terms of the channel parameters defined in the previous section [Table 1, equa-
tions (5c) and (6b)], the characteristic times for convection and diffusion are given
by L/Vm andy2

0/D∞, respectively. Hence, for the calibration apparatus,R can be
computed from

R= kT L

2πy4
0a(−∂p/∂x)

. (18)

The relative time is clearly a strong function of the channel height; variations in
R over an entire order of magnitude were observed from natural variations in the
clamping compression on the polycarbonate blocks. In the experiments the flow
rateQ was measured and the channel half-height inferred indirectly from [see (5c)]

y0 =
(

3µQ

2wρg

)1
3

, (19)

whereρ is the carrier-fluid density andw the channel width.
At each of the various experimentalR values, a rate constantK was determined

according to the procedure outlined at the end of Section 2. The average of all of
theseKs constituted the rate constant reported for the particular virus interacting
with latex in a saline medium of the prescribed salt concentration. The rate constants
are given in Section 5.

4. VALIDATION EXPERIMENTS

The purpose of the validation experiments was to test the calibrated model under
conditions as different as possible from those of the calibration procedure. We chose
to compare the empirical and computational values of virus transmission through
laser-drilled pores in condoms, using the virus PRD1 in physiological saline.

Holes were drilled in the tips of a batch of condoms using an excimer laser
(Resonetics Inc., Nashua, NH). The exit holes were photographed and the hole
diameters, ranging from about 1.7 to 2.7µm, were recorded. The apparatus used
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Figure 3. Apparatus used in validation experiments. Laser-drilled hole resides in tip of
condom.

to measure the virus transmission is shown in Fig. 3. The condoms were filled with
the virus suspension under a static pressure, and the viruses were transmitted to
a collection fluid outside of the condom. The pressure difference imposed across
the membrane corresponded to 5.5 cm of water (5394 dynes cm−2). This relatively
low pressure was required in order to keep the residence time in the pore at a high
enough level (for the larger pores); otherwise the viruses simply sped through the
pore with no opportunity to adsorb to the membrane.

In the experiments, the flux of virus into the pore was not easily measured, due
to the miniscule volumes transmitted, so relative transmission of PRD1 was de-
termined indirectly by simultaneously measuring the transmission ofφX174. As
φX174 displayed no adsorption in the calibration protocol, its concentration allowed
for a convenient measure of 100% transmission. Dividing the collected concen-
tration of PRD1 by the concentration ofφX174 (both normalized by their initial
concentrations since equal concentrations for each virus could not always be used)
provided the value for relative transmission.

In previous studies with laser-drilled condoms (Lytleet al., 1991; Mehtaet al.,
1998), a high likelihood of cessation of the virus flow during experiments was dis-
covered. This rather abrupt stoppage is apparently due to clogging by particulates
released from the condom surface (Mehtaet al., 1998). Clearly, cessation of virus
flow at an unknown time prior to the end of the collection period is a potential source
of significant error. To circumvent this problem, separate collection fluids were as-
sayed every 30 s. Data were used only when the amount of virus transmitted during
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at least two consecutive periods was approximately the same and displayed no sign of
reduced passage. This condition turned out to be quite difficult to achieve; evidence
of at least partial clogging was seen in over 90% of the measurements. [Some-
times the flow ceased and later commenced again, consistent with the findings of
Mehtaet al. (1998).]

To simulate computationally the geometry of the laser-drilled pore, the diameter
was assumed to be constant throughout the thickness of the membrane, at a value
determined from the image of the exit hole. This is only an approximation, as the
entrance holes where the laser strikes the membrane are known to be larger than the
exit holes. It was also unknown to what extent the pore volume was free of debris.
In order for the length of the pore to be accurately prescribed, the thickness of each
membrane was measured at the pore location.

Computations in the circular-cylinder geometry required transformation of the
governing equations into cylindrical coordinates. As the virus in the vicinity of the
pore wall is modeled as a sphere near a plane, i.e., local curvature is ignored within
the boundary layer, conversion to non-Cartesian geometries is straightforward. For
example, equation (13) at the edge of the boundary layer applies in the cylindrical
coordinate system (and other coordinate systems) once the normal derivative∂c/∂y
is replaced by the more general form−∇c · n (n being the outward normal to the
surface). Similarly, the resistance functionsg1 andg2 for the velocity and diffusivity
require no modification other than switching to the radial coordinate, since they are
equal to one outside the boundary layer. The velocity profile of equation (5b)
retains its parabolic shape for a circular cylinder, with centerline velocity equal to
(r 2

0/4µ)(−∂p/∂x), (wherer0 is the cylinder radius). The computational method
employed in the cylindrical coordinate system was identical to that described in
Section 2 for the Cartesian system. The experimental and computational values
of the amount of virus transported through the laser-drilled pores are given in the
next section.

5. RESULTS

In this section we present the computational and experimental results used to
develop, test and apply the model. Unless otherwise specified, the carrier fluid is
saline at physiologic (0.16 Molar) salt concentration.

5.1. Selection of boundary-layer thickness.As noted in Section 2, solutions
based upon the boundary-layer approach were compared to solutions to the full
governing equations in order to determine the optimal boundary-layer thickness. It
was found that for boundary-layer thicknesses between about one and three virus
radii, the boundary-layer-based solution closely matched the full solution over the
range of parameters tested. Figure 4 shows the virus concentration profile at the
outlet of a parallel-sheet pore, derived from both the full equations and the reduced
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Figure 4. Virus concentration across the outlet face of a parallel-sheet pore. Solid lines
represent solution to the full equations, assuming a Hamaker constantA of 2.2× 10−20 J,
and electrical potentials of91 = 92 = 24 mV for the top curve,91 = 92 = 0 for the
bottom. The solution based upon the boundary-layer approach for each case is given by the
dashed lines. Residence time/diffusion time= 1.0.

equations employing the boundary-layer thickness ultimately selected, 2.0 virus
radii. All concentration values in Fig. 4 are normalized by the concentrationc0

at the pore inlet. The dashed lines represent the boundary-layer expression equa-
tion (10), forh ≤ 2, and the solution to the outer equation (11) forh ≥ 2. The
separation between the sheets is 40 virus radii and the residence time/diffusion time
for virus transport within the channel is 1.0. For the top two plots of Fig. 4, the
Hamaker constantA is 2.2×10−20 J, and the electrical potentials assume the values
ψ1 = ψ2 = 24 mV [representative values from other colloidal-particle applications
(Ruckenstein and Prieve, 1976)]. For the lower two plots, the Hamaker constant is
the same but the electrical potentials have been set to zero.

5.2. Rate constants.The data from the calibration experiments typically mani-
fested the dependence uponRshown in Fig. 5. At small relative times the transmis-
sion decayed exponentially withR, while the falloff of relative transmission with
R appears sub-exponential whenR is greater than about 0.5. The correspondingK
values were independent ofR for R < 0.5 and decreased steadily with increasing
R for R > 0.5. The reasons behind the observed dependence ofK with relative
time are discussed in the next section; here we simply note that the data in the range
R< 0.5 were used to determine theK values.

The meanK values for the different viruses interacting with a latex membrane
in physiologic saline are given in Table 2. The uncertainty estimates represent
plus or minus one average deviation, where the average deviation is the sum of the
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Figure 5. Relative transmission versus relative time for PRD1 transport in the calibration
apparatus. Carrier fluid salt concentration is 0.16M.

differences (in absolute value) between eachK value and the mean, divided by the
number ofK values. Forφ6 and PRD1, there were some values ofR for which
the relative transmission was below that corresponding to the boundary condition
c = 0, i.e.,K was infinite. For the purpose of data analysis, at these data points the
K value was clamped at the value given by the geometric mean of the three largest
finite K values. While this procedure is somewhat arbitrary, it is important to note
that beyond a certainK value, the relative transmission changes very little with
variations inK , so the precise value ofK is not critical. For example, considering
PRD1 in 0.16M saline, the relative transmission is 0.61 forK = 5µm s−1 and 0.59
for K = 5000µm s−1. The uncertainties displayed in Table 2 are considerably
larger than the individual-measurement errors (typically around 5%) signified by
the error) bars in Fig. 5. While these uncertainties are rather large, we re-emphasize
that a small difference in relative transmission is mapped into a large difference in
associated rate constant, particularly whenK is large.

The dashed curve in Fig. 5 is the prediction of the computer model for the relative
transmission of PRD1 as a function ofR, usingK = 2.85µm s−1 from Table 2
andy0 = 25µm. Beyond a relative time of approximately 0.1, the dependence of
the virus transmission upon relative time is seen to be exponential.

The role of the carrier-fluid properties on virus transport was studied by varying
the salt concentration. The results plotted in Fig. 6 show three orders of magnitude
variation in rate constant over the range of salinities examined, and a sharp change
in the rate constant occurring around a concentration of 0.01M.
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Figure 6. Rate constant versus salt concentration for PRD1 in saline interacting with a latex
membrane.

Table 2. Rate constants for different viruses interacting with a latex membrane in 0.16M
saline.

Virus k Uncertainty in k
(µm s−1) (µm s−1)

φX174 0.02 0.02
MS2 0.25 0.19
PRD1 2.85 1.54
φ6 3.23 1.47

5.3. Model validation. A comparison of experimental and computational values
of relative transmission of PRD1 through the laser-drilled holes is provided in Fig. 7.
The length of the pores, i.e., the thickness of the condom, varied by almost a factor
of two between the six trials represented in the figure. Thus it was useful to present
the results as a function of relative time rather than pore diameter. The average
difference between the measurements and model predictions is about 5%.

5.4. Example calculations. The implications of the wide variation in rate con-
stants reported in Section 5.1 were assessed through some sample calculations based
upon practical values for the input parameters. In one set of computations we im-
posed the standard (see Section 2) 80 000 dynes cm−2 pressure gradient across the
membrane. The length of the pore was taken to be a typical thickness for a latex
condom, 100µm. Using 0.16M saline as the carrier fluid, we computed the relative
transmission for our four bacterial viruses for cylindrical pores of various diame-
ters. The smallest diameter considered was 0.4 µm, about five times the diameter
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Figure 7. Relative transmission as a function of relative time for PRD1 passage through
laser-drilled pores. Dashed curve represents predictions from computational model.

of largest virus,φ6, in order to satisfy the requirement that the pore diameter be
much larger than the virus diameter. The transmission rates for the four viruses are
plotted in Fig. 8. As the hole size is decreased, a sharp falloff in the transmission
rate is seen for PRD1 andφ6, and a moderate falloff is observed for MS2, but there
is virtually no decrease in the relative transmission forφX174 over the range of
hole sizes considered.

Similar calculations (80 000 dynes cm−2 pressure, 100µm pore length) performed
for different values of the carrier-fluid ion concentration are summarized in Fig. 9.
Here the virus is PRD1 and the pore diameter 0.5µm. As the salinity of the carrier
fluid is increased, a marked decrease in virus transmission is observed around a
molar salt concentration of around 0.01, corresponding to the rapid change in rate
constant at that salinity observable in Fig. 6.

6. DISCUSSION

The concentration profiles of Fig. 4 provide a view of the typical distribution
of viruses across a pore. For the bottom curves, the interaction force between
the virus and barrier is attractive at all virus–membrane separations. The virus
velocity toward the wall induced by the interaction force increases as the separation
decreases, and at a small enough separation the virus ceases to belong to the free-
virus suspension. Appreciable adsorption occurs as the viruses traverse the pore; the



www.manaraa.com

134 M. R. Myerset al.

0.0
0.0

0.2

0.4

0.6

R
el

at
iv

e 
tr

an
sm

is
si

on
0.8

1.0

1.0 2.0

Pore diameter (µm)

3.0

Figure 8. Relative transmission through cylindrical pores in a latex barrier versus cylinder di-
ameter, for bacterial virusesφX174 (solid line), MS2 (dotted line), PRD1 (dashed line), and
φ6 (dashed and dotted line). Pore length is 100µm, driving pressure is 80 000 dynes cm−2,
and the carrier fluid is 0.16M saline.
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Figure 9. PRD1 transmission through a 0.5µm diameter cylindrical pore, as a function
of carrier-fluid salt concentration. Pore length is 100µm and the driving pressure is
80 000 dynes cm−2.

maximum concentration across the pore outlet is seen to be only about 0.2, compared
with 1.0 at the inlet. For the top curves in Fig. 4, the virus–barrier interaction force
is alternately attractive, repulsive, and again attractive as the separation distance
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is increased. A potential energy barrier exists at around a separation of about
0.1 virus radii, along with an energy well just outside the barrier at a separation
of around 0.3 radii. The virus concentration is highest in the potential-energy
well. Owing to the presence of the repulsive electrical forces and hence the energy
barrier, virus adsorption to the channel walls is appreciably less than for the purely
attractive force.

The good agreement between the solid and dashed lines of Fig. 4 is evidence
that the boundary-layer approach can provide accurate solutions to the transport
equations. The advantage to the boundary-layer technique extends well beyond the
computational efficiency relative to a full numerical solution. In the semi-empirical
approach combined with the boundary-layer approximation, only a single empirical
constant is determined, the rate-constantK . Solutions to the full transport equations
incorporating the actual virus–membrane interaction forces require determination
of three or more empirical constants. A multi-dimensional parameter-estimation
problem is involved, solutions to which can be very laborious and subject to non-
uniqueness issues. Perhaps most importantly, approaches incorporating the inter-
action forces are limited by the range of validity of the expressions describing the
forces, and by the physical mechanisms included in the force expression. In the
semi-empirical boundary-layer approach, all of the relevant physical mechanisms
are contained within the parameterK .

For the experiments used to determine theK values, the eventual diminished rate
of falloff in virus transmission with relative time, observable in Fig. 5 forR> 0.5,
could reasonably be attributed to reversibility effects. That is, in addition to ad-
sorbing to the pore wall, viruses are continually desorbing back into the suspension.
For small values of transmission (high values of adsorption), the desorption flux
would be significant. In experiments performed at a givenR, i.e., a given separa-
tion distancey0 in the calibration apparatus, reversibility would give rise to a time
dependence of the relative transmission. (The steady state being an equilibrium
between adsorption and desorption and a concomitant 100% transmission rate.)
However, in additional experiments performed for durations more than twice that
of the calibration experiments, the transmission rate remained steady (typically at a
value of around 30% for PRD1) throughout the experiment. These extended-time
experiments were performed with relative times in the range 1< R< 3, and hence
were presumably affected by reversibility. Additionally, preliminary removal ex-
periments indicate that essentially all of the untransmitted virus in a calibration
experiment can be accounted for by rinsing the calibration apparatus after the ex-
periment with the surfactant Tween 80, while none is recovered by rinsing with pure
saline, indicating an essentially irreversible binding between the virus and latex in
the presence of pure saline.

More than reversibility, dynamic adsorption (Van de Ven, 1989) appears to be a
likely cause of the diminishing falloff in rate of transmission with largeR. Van
de Ven (1989) accounts both for viruses which are immobilized at the pore wall
and those which are dynamically adsorbed, i.e., concentrated in a minimum of the
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interaction energy between the virus and the pore wall, but still able to translate
parallel to the wall. The dynamically adsorbed viruses contribute to the observed
transmitted flux, especially when the axial flux through the central volume of the
pore (outside the boundary layer) is relatively small. This immobilization reaction
approximation of Van de Ven (1989), which requires the introduction of at least
one additional empirical parameter, is currently being considered for its potential
use in extending the perfect-sink-based model to smaller relative transmissions
(higher adsorptions). For now, we restrict the quantitative application of the model
to transmission rates above about 30%. Quantitative comparisons, say between
different viruses or different carrier fluids, can be made at lower transmission rates.
Examples of such comparisons are given below.

The exponential (linear on the semi-logarithmic scale) nature of the model pre-
diction shown in Fig. 5 can be better appreciated by referring to previous solutions
to related convective-diffusion problems. Under the conditions applicable to Fig. 5,
the virus radiusa is so much smaller thany0 that the boundary condition (13)
can be transferred toy = 0. After dividing through byKc0 in (13) the order of
magnitude of the second term isD∞/K y0 < 0.1, so that (13) is well approxi-
mated byc(x,0) = 0. If we further treat the diffusivity as constant in the outer
region, the outer equations correspond to the classic Graetz problem (Eckert and
Drake, 1972; Bowenet al., 1976). Following a developing region at smallR, the
concentrationc and relative transmission decay exponentially with R. The solu-
tion for the concentration and relative transmission are actually an infinite series of
exponentials, but for largeK y0/D∞ only the lowest-order mode is significant for
relative times greater than about 0.05. For smaller values ofK , e.g., for the virus
MS2, a more complicated dependence uponR would be observed.

With regard to experimental validation of the model, the agreement between the
model predictions and the measurements in Fig. 7 was felt to be good, especially
given the amount of spread in the data points themselves. Part of the reason for the
high accuracy of the model is the absence of the dynamic adsorption effect discussed
above and evident for the calibration apparatus at a residence time of 0.5 (Fig. 5).
That dynamic adsorption is still insignificant at a relative time of 0.7 demonstrates
that the small-diameter cylindrical pore is much less efficient at adsorbing PRD1
virus than the parallel-sheet channel. For example, for a residence time/diffusion
time of 0.5, the relative transmission is twice as high for the cylindrical pore.
This might appear surprising, as a cylinder with the same radius as the channel
half-width would be a more efficient adsorber than the channel. (For the parallel-
sheet channel, Brownian motion in the direction out of the plane of Fig. 1 does
not contribute to adsorption, making the channel less efficient at adsorption.) The
higher transmission rate for the cylindrical pore than for the parallel-plate channel
is due to the vastly different pore dimensions, in the following manner. Consider an
axial location in each pore where a significant fraction of the pore cross-section has
had a chance, via diffusion, to feel the effect of the boundary. This occurs where the
relative time isO(1) (e.g., 0.5), and is physically located much further in the axial
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direction for the parallel-sheet channel than the cylinder. At this point an order of
magnitude estimate for the concentration gradient∂c/∂y is c0/y0 for the channel
andc0/r0 for the cylinder (r0 = cylinder radius). The dimensionless rate constants
K y0/D∞ andKr0/D∞ then provide a measure of the adsorptive tendencies of the
systems. We see that in a normalized sense the cylinder has a smaller rate constant
and is less adsorptive, even though forK y0/D∞ = Kr0/D∞ the cylinder would be
more adsorptive.

The very different rate constants in Table 2 are indicative of the very different
adsorption tendencies for the four viruses studied. PRD1 andφ6 are highly ad-
sorptive to latex at physiologic salt concentrations, MS2 is moderately adsorptive,
and to within experimental accuracy no adsorption ofφX174 to latex was ever
observed. An important practical implication of the wide range of adsorptive be-
havior exhibited by the test viruses can be seen from Fig. 8. As expected for large
hole sizes, the residence time was too small for appreciable adsorption to occur,
and each virus had an asymptotic relative transmission value of 1.0. However, for
small-diameter pores the transmission rate was highly virus-dependent. While the
very low transmission rates should be recognized as underpredictions (as discussed
at the beginning of this section), it is clear that assessing barrier integrity based
upon transmission rates for PRD1 orφ6 would lead to a gross underestimation of
the probability of transmission for a virus similar toφX174.

Potentially misleading test results can also occur under circumstances where the
ion concentration of the laboratory carrier fluid is different from that occurring in
practice. The results of Fig. 6 show a significant influence of salt concentration
on the rate constant for PRD1 with a latex membrane. The small rate constants at
low salt concentrations demonstrate that the repulsive electrical forces, which are
unshielded (Hiemenz, 1986; Israelachvili, 1992) due to the low ion concentration,
allow little adsorption, i.e., boundary condition (13) reduces to the virus-conserving
condition D(y)∂c/∂y = 0 at y = ybl . The opposite is true at high salt concen-
trations: the free ions effectively neutralize the electrical forces and, under the in-
fluence of the dominant van der Waals force, an essentially perfect sink–boundary
conditionc = 0—is present even at the edge of the boundary layer. The practical
importance of the ion-concentration level is manifested in Fig. 9: a probability of
virus transmission based upon results obtained with 0.16M saline would not be
representative of the risk associated with use of the membrane in a low-salt en-
vironment. A striking feature of Fig. 9 is how sharply the division between high
transmission and low transmission occurs. Within a factor of two on either side of
0.01M, the transmission varies by an order of magnitude. (Again, the lowest trans-
mission values are probably underestimated within the perfect-sink approximation.)
The transmission values plotted in Fig. 9 apply to a single pore diameter, driving
pressure, pore length, etc. The transmission values at higher salt concentrations
would be higher, for example, for larger-diameter pores. One important role of the
computational model is to provide a quick estimate of the risk of virus transmission
for any parameter combination of interest.
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7. CONCLUSIONS

In this paper a boundary-layer approximation to the particle-transport equations
has been used to develop a model for simulating virus transport through barriers.
The model is quantitatively applicable forO(1) values of the relative transmission.
For very small values of relative transmission the amount of virus adsorption is over-
predicted, probably due to the small but finite velocity of the dynamically adsorbed
viruses which are ignored within the perfect-sink approximation but contribute to
the flux through the pore. Even for low values of the virus transmission, the model
is useful for qualitative comparisons of the likelihood of transmission between
different viruses and different carrier fluids.

An important consequence of the boundary-layer approach is the emergence of
a single rate constant characterizing the complex physical interaction between the
virus and the barrier in the presence of a carrier fluid. The rate constants are
universal - they apply to the vast majority of pore flows, where Brownian motion
and interaction forces are the dominant transport mechanisms near the pore walls. (A
counterexample would be a situation where carrier fluid is sucked through the pore
boundary at a sufficiently high rate.) Successful application of the model requires
knowledge of the rate constantK for each virus–barrier–carrier-fluid combination
of interest. The most novel feature of the model is the empirical determination of
K in an apparatus which allows for measurable amounts of virus adsorption as well
as rapid simulation of transport through the device.

While the mathematical model was derived and applied in simple geometries, it
can be readily extended to more complicated configurations. Elliptical cylinders
provide reasonable geometric approximations to slits or tears that occur in surgi-
cal and examination gloves. Tortuous-path geometries, or arrays of bodies (e.g.,
spheres), are more appropriate for modeling natural material porosity. Within the
array model, allowance must be made for the hydrodynamic interaction between
the virus and the boundary in a local stagnation-point flow, rather than the purely
shear flows considered in this paper.

At this time the model is restricted to steady-state simulations. Incorporation of
a time-varying pressure gradient, as would be present in realistic simulations of
sexual or surgical behavior, is conceptually straightforward once an estimate of the
transient pressure can be made. A much more difficult transient effect to incorporate
is capillary action. (The presence of the free surface complicates the simulation.)
In some cases surface tension dictates whether the steady-state flows assumed to
exist are actually initiated, as the driving pressure must exceed the tension of the
fluid surface extending across a pore opening. Surface tension also strongly affects
the time necessary for the concentration front to negotiate the pore. Analysis of
capillary action will require further empirical information, particularly about the
interaction energy between the carrier fluid and the barrier material. Inclusion
of both transient pressures and surface-tension effects is a long-term goal of the
modeling effort.
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The practical value of the simulation model will be enhanced as calibration is
performed for other virus–barrier–carrier fluid combinations of interest; i.e., as the
database of rate constants is enlarged. Efforts are underway to include two viruses
of high public-health interest, herpes and HIV. An additional goal is to perform
calibration experiments using serum, the major constituent of blood and semen,
as the carrier fluid. New barrier materials, not only for elastic membranes but for
gowns, masks, and biomedical filters, are rapidly being developed. It is our hope
that the mathematical model can be calibrated on an ongoing basis to include these
materials, so that assessment of the integrity of the materials as barriers to virus
transmission can be performed under a wide range of use conditions.
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